数字人文研究 ›› 2022, Vol. 2 ›› Issue (2): 16-34.

• • 上一篇    下一篇

理解口述历史中的记忆——神经网络新方法在数字人文研究中的应用

  

  • 出版日期:2022-07-08 发布日期:2022-09-05
  • 作者简介:托拜厄斯·布兰克(Tobias Blanke),英国伦敦国王学院数字人文系教授,Email∶tobias.blanke@kel.ac.uk;马克·海格斯(Mark Hedges),英国伦敦国王学院数字人文系准教授;迈克尔·布莱恩特(Michael Bryant),英国伦敦国王学院数字人文系助理研究员;张斯桐(译者),英国爱丁堡大学欧洲戏剧专业博士研究生。

Understanding Memories of the Holocaust——A New Approach to Neural Networks in the Digital Humanities

  • Online:2022-07-08 Published:2022-09-05

摘要: 文章解决了人文学科中人工智能研究中的一个重要挑战,该挑战阻碍了有监督方法的进展。它介绍了一种从较少的数据集中创建测试集的新方法。这种方法基于 “远程监督”,并将允许通过包含有监督学习的新方法来改进数字人文研究中的计算建模。首先使用循环神经网络,生成了一个训练语料库,并能够训练一个高度准确的模型,该模型在质和量上改进了基线模型。其次,为了 证明这一新方法,采用了一个基于现有人文馆藏的现实研究问题作为对象,即使用基于神经网络的情感分析来解读大屠杀记忆,并提出一种结合有监督和无监督情感分析的方法来分析美国大屠杀纪念馆的口述历史档案。最后,采用了三种先进的计算机语义方法,帮助解读神经网络的结果,并理解比如证词中围绕家庭记忆的复杂情绪。

关键词: 口述历史, 记忆, 神经网络, 大屠杀, 情感分析, 数字人文

Abstract: This article addresses an important challenge in artificial intelligence research in the humanities,which has impeded progress with supervised methods. It introduces a novel method to creating test collections from smaller subsets. This method is based on what we will introduce as distant supervision' and will allow us to improve computational modelling in the digital humanities by including new methods of supervised learning. Using recurrent neural networks,we generated a training corpus and were able to train a highly accurate model that qualitatively and quantitatively improved a baseline model. To demonstrate our new approach experimentally, we employ a real-life research question based on existing humanities collections. We use neural network based sentiment analysis to decode Holocaust memories and present a methodology to combine supervised and unsupervised sentiment analysis to analyse the oral history interviews of the United States Holocaust Memorial Museum. Finally, we employed three advanced methods of computational semantics. These helped us decipher the decisions by the neural network and understand, for instance, the complex sentiments around family memories in the testimonies.

Key words: soral history, memory, neural network, Holocaust, sentiment analysis, digital humanities

中图分类号: