数字人文研究 ›› 2025, Vol. 5 ›› Issue (3): 41-60.

• 攻玉以石 • 上一篇    下一篇

面向口述史文本分析的大语言模型提示工程与人机协同策略

马林青,中国人民大学信息资源管理学院副教授,中国人民大学数字人文研究院研究员;石佳琪(通讯作者),中国人民大学公共管理学院本科生;曹星宇,中国人民大学信息资源管理学院本科生。
  

  • 出版日期:2025-09-28 发布日期:2025-11-05
  • 基金资助:
    本文为2025年国家社科基金一般项目《南水北调工程早期档案史料整理与数字记忆构建研究(1952—1979)》(项目编号:25BTQ069)的阶段性研究成果。

Prompt Engineering and Human-AI Collaboration Strategies with Large Language Models for the Analysis of Oral History Texts

  • Online:2025-09-28 Published:2025-11-05

摘要:

历史研究长期依赖官方档案与精英著述,易导致个体记忆被边缘化。口述史则为重现被忽略的社会生活与个体记忆提供了独特窗口,但其非规范性、高语境依赖性及多维交织的文本特性,使结构化信息抽取和系统分析面临挑战。研究以票证口述史文本为案例,旨在探索并验证一套将大语言模型(LLM)“规训”为能够严格遵循研究指令的学术助手的“人机协同”方法论。研究设计了系统的四阶段渐进式实验,通过“基础指令—规则化指令—程序化约束—小样本学习”的迭代优化,探索如何科学、有效地利用LLM强大的语义理解与指令遵循能力,以实现高效、精准的结构化信息抽取。研究发现,提示词工程化水平显著影响LLM输出质量,精巧的程序化约束可将大模型分析准确度大幅提升。研究还系统比较了同一技术框架下为不同任务优化的LLM在逻辑遵循能力上的表现差异,验证了小样本学习的价值与效益饱和点,并揭示了LLM在精确计算等任务上的固有缺陷。研究最终提炼出一套面向口述史文本分析的包含“规则化转译”与“任务合理分工”等核心策略的LLM“规训”框架,实现了高效、精准的口述史文本结构化分析,为数字人文研究提供了一种可复现、兼具效率与深度的智能研究范式参考。

关键词:

Abstract:

Historical inquiry has long relied on official archives and elite writings, often marginalizing individual memories. Oral history offers a distinctive window onto overlooked social life and personal recollection; however, its non-standardized, highly context-dependent, and multi-layered textual characteristics pose challenges for structured information extraction and systematic analysis. Using oral history texts concerning ration coupons as a case study, this research explores and validates a human-AI collaboration methodology that “disciplines” large language models(LLMs) into scholarly assistants capable of strict instruction following. We design a progressive four-stage experiment—basic instructions, rule-based instructions, programmatic constraints, and few-shot learning—to iteratively optimize how to leverage LLMs, semantic understanding and instruction-following capabilities for efficient and precise structured information extraction. The findings show that the maturity of prompt engineering substantially affects output quality, and that carefully designed programmatic constraints can markedly improve the accuracy of LLM-based analyses. We further compare LLMs optimized for different tasks within a common technical framework, documenting variation in logical adherence, confirming the value of few-shot learning while identifying its point of diminishing returns, and revealing inherent limitations of LLMs in tasks requiring exact computation. The study distills an LLM “disciplining” framework for oral history text analysis that incorporates core strategies such as rule-based transduction/normalization and prudent task allocation between humans and models. The framework delivers efficient and accurate structured analysis of oral history texts and offers a reproducible, scalable intelligent research paradigm for digital humanities.

Key words:

中图分类号: