数字人文研究 ›› 2025, Vol. 5 ›› Issue (1): 76-96.

• 攻玉以石 • 上一篇    下一篇

面向数字人文的双阶段刺绣图案自动识别与分割模型建构及应用

鲍亚林,辽宁大学文学院博士研究生
  

  • 出版日期:2025-03-28 发布日期:2025-05-23

Construction and Application of A Two-Stage Embroidery Pattern Automatic Recognition and Segmentation Model for Digital Humanities

  • Online:2025-03-28 Published:2025-05-23

摘要:

图像分割方法在传统刺绣图案的识别与分割领域已有一定应用,但因刺绣图案具有边缘复杂、细节繁琐以及类型多样等特点,传统的图像分割方法难以满足实际应用中高精度和高效率的需求。就此,该研究建构了一种基于YOLOU-Net级联的双阶段刺绣图案识别与分割方法:在第一阶段采用YOLO算法进行目标检测,快速定位刺绣图案的具体位置;在第二阶段使用改进后的U-Net算法进行语义分割。改进的U-Net编码器结构采用了ResBlock-CBAM模块作为骨干网络,以增强特征提取的有效性,并引入ASPP模块进行特征增强,确保不同特征的有效提取和融合。通过双阶段级联网络,该方法能够捕捉刺绣图像的细节和上下文信息,实现对刺绣图案的精细分割,保留复杂的边缘和细节。实验结果显示,该研究算法在DiceMioU等评估指标上分别达到0.85840.8376,精确率达到84.53%,显著优于其他先进分割算法。在此基础上建立的刺绣智能识别与分割系统,可实现刺绣图案的高效自动化提取与处理,不仅为刺绣图案的数字化保存和传承提供了技术支持,还为刺绣设计的现代化和个性化发展开辟了新的途径。

关键词:

Abstract:

Image segmentation methods have been used in the field of recognition and segmentation of traditional embroidery patterns. However, due to the characteristics of complex edges, cumbersome details and diverse types of embroidery patterns, traditional image segmentation methods are difficult to meet the requirements of high precision and high efficiency in practical applications. So, this paper presents a dual-stage embroidery pattern recognition and segmentation method based on a YOLO and U-Net cascade. In the first stage, the YOLO algorithm is employed for object detection, quickly and accurately locating the embroidery patterns within the image. In the second stage, an enhanced U-Net algorithm is used for semantic segmentation. The U-Net encoder structure is improved by incorporating a ResBlock-CBAM module as the backbone, enhancing the effectiveness of feature extraction, and integrating an ASPP module for feature enhancement to ensure effective extraction and fusion of various features. This dual-stage cascade network captures the fine details and contextual information of embroidery images, enabling precise segmentation that preserves complex edges and details. The experimental results show that the algorithm in this study reaches 0.8584 and 0.8376 in the evaluation indicators such as Dice and MioU, respectively, and the accuracy rate reaches 84.53%, which is significantly better than other advanced segmentation algorithms. At the same time, this paper establishes an "embroidery intelligent recognition and segmentation" system to achieve efficient and automatic extraction and processing of embroidery patterns. This method not only provides technical support for the digital preservation and transmission of embroidery patterns, but also paves the way for the modernization and customization of embroidery design.

Key words:

中图分类号: